

STRUCTURAL TECHNICAL REPORT 2 PRO-CON STRUCTURAL STUDY OF ALTERNATE FLOOR SYSTEMS EXECUTIVE SUMMARY OCTOBER 31, 2005

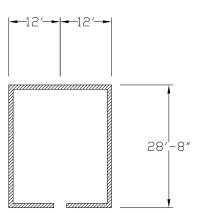
The Academic Villages are located in Orlando, Florida. It is a complex of ten separate dormitories built to accommodate 500 new freshman students. The buildings are various sizes ranging from 14,000 square feet to 22,000 square feet. Each building is 4 stories tall and 44'-8" above the ground. Each floor has between eleven and fifteen 24 ft x 28 ft apartment units.

For this technical assignment, the existing floor system and 4 alternative floor systems were evaluated for the University of Central Florida's Academic Villages. The existing system is a composite deck with a 4" slab. Below are the 4 alternative systems that were analyzed:

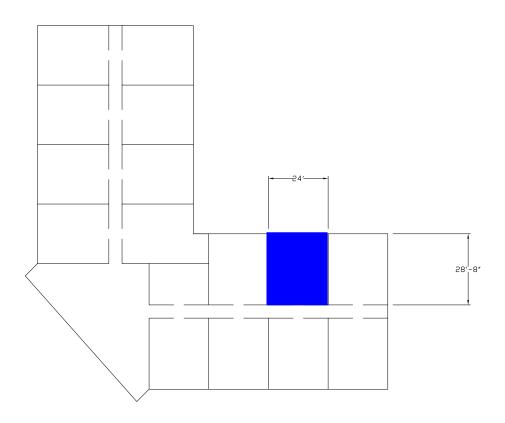
- **1.** Post-Tensioned Concrete system in East-West Direction
- **2.** Post-Tensioned Concrete system in North-South Direction
- **3.** Precast Hollow Core Planks
- **4.** Two-Way Flat Plate Slab

The Post-Tensioned Concrete system in the E-W direction is a viable option as a possible floor system for this structure. A thinner slab was found when using the post-tensioned system in this direction which would result in less weight due to concrete. This will produce a much lighter building with less load on the foundation, which can be a benefit in high wind areas such as Florida. Also, the existing system needs additional concrete columns and beams on the first floor to provide additional support for the load bearing stud walls which are not adequate to carry the entire weight of the floors above on their own. Using a Post-tensioned system will provide lighter loads and those extra beams and columns may be able to be eliminated completely upon further analyses. The Post-Tensioned system in the N-S direction requires a 14" slab to support the 62'4" clear span, which is much too large. Using Precast Hollow Core Planks is another feasible alternative floor system. It is a very efficient system since construction time is minimal and is non labor intensive. It's slightly deeper than using a slab on grade but weighs about the same. A Two-Way Flat Plate system, while being very efficient in construction time and labor, requires a 10" slab which is much too deep when compared to some of the other alternatives.

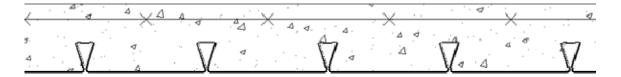
STRUCTURAL TECHNICAL REPORT 2 PRO-CON STRUCTURAL STUDY OF ALTERNATE FLOOR SYSTEMS OCTOBER 31, 2005


Introduction:

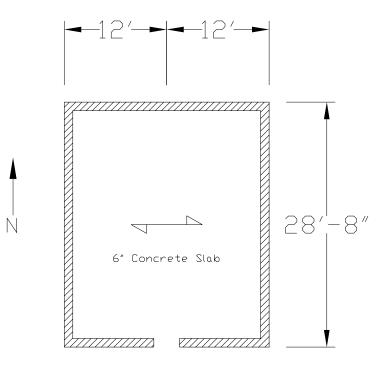
The Academic Villages located in Orlando, Florida. It is a complex of ten separate dormitories built to accommodate 500 new freshman students. The buildings are various sizes ranging from 14,000 square feet to 22,000 square feet. Each building is 4 stories tall and 44'-8" above the ground. Each floor has between eleven and fifteen 24 ft x 28 ft apartment units.


Existing System:

The existing floor system for the University of Central Florida's Academic Villages is called the "Infinity System." This is a composite floor system with 2" 22 GA. Epicore MSR metal decking with a 4 ¹/₄" concrete topping with W6x6 W2.1xW2.1 WWF reinforcement. It spans between interior and exterior load bearing CMU walls in the east-west direction and load bearing metal stud wall panels. Epicore MSR has triangular dovetail shaped ribs spaced 8" on center that allow for longer spans and higher concrete strength. The bottom flutes are completely closed which allows for the deck to have a flat bottom profile. This makes it ideal to combine with load bearing stud walls because it distributes the load evenly over the metal studs eliminating the need for load distribution devices. The typical span in this building is 24 feet. The typical bay that I chose to analyze is 24' x 28'8".


Typical Bay

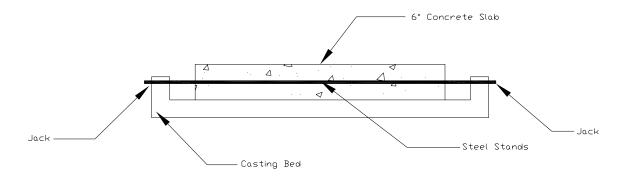
Building Footprint


Epicore MSR metal deck Section

Alternative 1: Post-Tensioned Concrete in E-W direction:

A post-tensioned concrete system is a system where the concrete is reinforced with high strength steel stands. These strands are tightened to a specified stress prior to the concrete being poured. Once cured, the strands provide additional tensile stress to the bottom of the concrete slab. A post-tensioned system allows for smaller slab thicknesses, longer clear spans. It is an "active" reinforced system, which means that deflection and cracking are greatly decreased since the steel strands are constantly loaded, unlike "passive" concrete systems where the slab deflects and cracks before the reinforcement provides the additional tension needed. By reducing the slab thickness, the buildings weight is also greatly reduced. This greatly reduces the amount of load the foundation experiences. Post-tensioning provides a great deal of flexibility with the building layout by allowing for longer spans if necessary. Some of the downsides of post-tensioned concrete are that it requires a higher level of construction sophistication. A highly skilled labor force should be present to be sure that the strands are installed correctly. Buildings which are constantly being structurally modified should not use this system since the high stress steel strands make it very dangerous to cut into the slab. Shrinkage is also an issue with post-tensioned concrete since it is enhanced to the axial stresses acting on the side.

Typical Bay Post-Tensioned Concrete Slab (E-W)

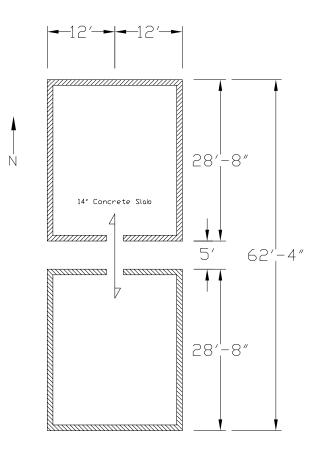

Assumptions:

- Superimposed Load, w = 125 psf
- $F'_c = 4000 \text{ psi}$
- $F_v = 60,000 \text{ psi}$
- Cross section is homogenous
- Strand stress $f_{py} = 270$ ksi
- Strand area $A_{ps} = 0.153 \text{ in}^2$
- Concrete is uncracked \rightarrow Class U \rightarrow f_{tallowable} = 474 psi
- Fiber stress in compression is due to prestress plus total load

 \rightarrow f_{callowable} = 2400 psi

- Span = 24'0"
- Length = 28'8''

Post-Tensioned Concrete Detail



Results:

Using the allowable stresses of $f_{tallowable} = 474$ psi and $f_{callowable} = 2400$ psi calculated from ACI 318-02 sections 18.3.3 and 18.4.2 and setting them equal to the actual stresses and the force in the steel stands; I found that $P_e = 24.6$ kips. This was based on a 6" slab with a 2" eccentricity. The strands need to be spaced a maximum of 12" apart. (See appendix for calculations)

Alternative 2: Post-Tensioned Concrete in N-S direction:

When using post-tensioned concrete in the east west direction, the largest span is 62'4" and the length is 24'0". All other assumptions are the same as Alternative 1.

Assumptions:

- Superimposed Load, w = 125 psf
- $F'_c = 4000 \text{ psi}$
- $F_y = 60,000 \text{ psi}$
- Cross section is homogenous
- Strand stress $f_{py} = 270$ ksi
- Strand area $A_{ps} = 0.153 \text{ in}^2$
- Concrete is uncracked \rightarrow Class U \rightarrow f_{tallowable} = 474 psi
- Fiber stress in compression is due to prestress plus total load

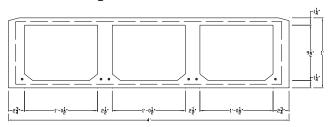
$$\rightarrow$$
 f_{callowable} = 2400 psi

- Span = 62'4''
- Length = 24'0"

Results:

Since this was a much longer span than the E-W direction, a much thicker slab was required. After finding out that a 12" slab with a 3" eccentricity did not have sufficient compressive strength, I assumed a 14" slab with a 5" eccentricity. This satisfied the compressive and tensile allowable stresses specified in ACI 318-02. The maximum spacing in this direction is a strand every 4". (See appendix for calculations)

Alternative 3: Precast Hollow Core Plank System


Precast hollow core planks can range anywhere between 6 inches thick to 16 inches thick depending on how long a span is desired. A 6" hollow core plank with a 100 psf superimposed load can usually support a 20-22 foot span while 16" planks can support up to 50 foot spans under the same load. The hollow core allows for a reduction of the weight by approximately 60% compared to a solid section. Construction time is greatly reduced when using precast panels since the concrete has already been cured. Precast panels can also be erected any time of the year unlike cast in place concrete, which needs certain conditions to cure properly. Precast panels also have an excellent fire rating. Depending on the thickness, up to 4 hour endurance can be achieved. Precast panels are much deeper than cast in place concrete system since the smallest thickness available is 6". Many use an additional 2" concrete topping which further reduces the amount space available. The system that will be looked at here was designed using the Nitterhouse Concrete Products Manual. Based on the 24' span in the typical bay, a trial 8"x 4' panel was selected.

Assumptions:

- F'c =5000 psi at 28 days
- Maximum tensile stress = $6 * (f'c)^{0.5} = 424 \text{ psi}$
- Span = 24 ft
- No concrete cover used at this time
- Precast wt = 57.5 psf (8"x 4")
- M/E/P = 10 psf
- Partitions = 20 psf
- Live load = 40 psf

Results:

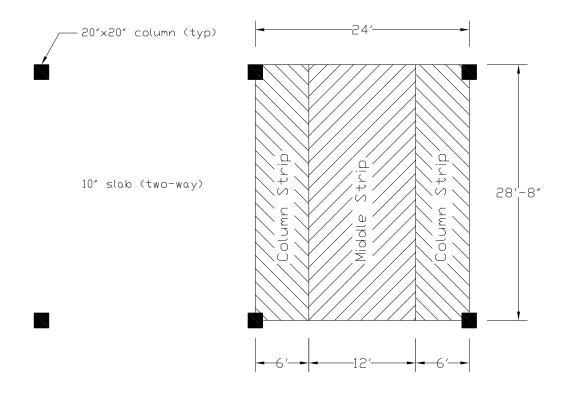
Using the Nitterhouse Concrete Products Manual, the 8"x 4' Spandeck –UL–J917 with no concrete topping and 6 strands was sufficient to carry the 127.4 superimposed load.

12" SpanDeck Cross Section

Alternative 4: Two-Way Flat Plate Slab

Since the typical bays for this structure are relatively square, a two-way flat plate system was analyzed to be an alternative structural system. Flat plate construction is very efficient process given that it minimizes both time and labor due to the very simple formwork and steel layout. It is very practical for layouts that need flexibility such as hotels, hospitals, and apartments/dormitories. In addition, flat plates allow for minimum story height for required clear headroom. Using a span of 24 feet, this analysis was done without the use of capitals or drop panels, although it is possible that they might be necessary since the span is almost 25 feet. This system was analyzed using CRSI 2002.

Assumptions:


- F'c = 4000 psi
- All reinforcement bars are Grade 60
- Superimposed load rounded up to 100 psf (LL = 40 psf, DL = 30 psf)
- 24' clear span

CRSI Results:

- Minimum slab thickness = 10"
- Minimum square column width = 20"
- Exterior Panel Reinforcement
 - o Column strip
 - Top Exterior \rightarrow 11-#5
 - Bottom → 8-#6
 - Top Interior \rightarrow 11-#7
 - Middle strip
 - Bottom \rightarrow 9-#5
 - Top Interior \rightarrow 9-#5
- Interior Panel Reinforcement
 - Column strip
 - Top → 13-#6
 - Bottom \rightarrow 9-#5
 - Middle strip
 - Top \rightarrow 9-#5
 - Bottom \rightarrow 9-#5

Results:

According to CRSI 2002, 20"x 20" square columns are required due to the 24' span. If the widths of these columns needs to be further reduced, drop panels can be used to help distribute the load to the columns. The thinnest slab available for this span was 10" thick. See diagram below for column layout.

Two-Way Flat Plate Concrete Slab

Conclusion

In conclusion to the analysis of these 5 structures, it has been determined that the existing structure while a good choice for the structural floor system may not be the best. The Post-Tensioned Concrete system in the E-W direction is a viable option as a possible floor system for this structure. A thinner slab was found when using the post-tensioned system in this direction which would result in less weight due to concrete. This will produce a much lighter building with less load on the foundation, which can be a benefit in high wind areas such as Florida. Also, the existing system needs additional concrete columns and beams on the first floor to provide additional support for the load bearing stud walls which are not adequate to carry the entire weight of the floors above on their own. Using a Post-tensioned system will provide lighter loads and those extra beams and columns may be able to be eliminated completely upon further analyses. The Post-Tensioned system in the N-S direction requires a 14" slab to support the 62'4" clear span, which is much too large. Using Precast Hollow Core Planks is another feasible alternative floor system. It is a very efficient system since construction time is minimal and is non labor intensive. It's slightly deeper than using a slab on grade but weighs about the same. A Two-Way Flat Plate system, while being very efficient in construction time and labor, requires a 10" slab which is much too deep when compared to some of the other alternatives. Further analysis will be taken to decide if a post-tensioned concrete system is a better choice than the existing system. The following chart shows the results of this report.

Compare/Contrast

System	Depth	Advantages	Disadvantages	Potential	
Existing: Composite deck with slab	4"	Works well with steel studs Relatively low cost Long spans Good fire rating	N/A		
	T	Ι.			
Post-tensioned Concrete (E-W)	6"	Long spans Thin slabs/less weight Fewer deflections Less cracking	Shrinkage Complex construction Need additional fire protection Construction time	YES	
	1				
Post-tensioned Concrete (E-W)	14"	Long spans Fewer deflections Less cracking	Shrinkage Complex construction Need additional fire protection Construction time	NO	
Precast Hollow Core Planks	8"	Lightweight Fast construction Weather not a problem Allows for floor conduit	High cost Lead time for fabrication Deep system	YES	
		1			
Two-Way Flat Plate Slab	10"	Long Spans Fast construction Not Labor intensive Reusable formwork	Deep system Heavy system Need additional fire protection	YES	

Post-Tensioned Concrete (E-w)

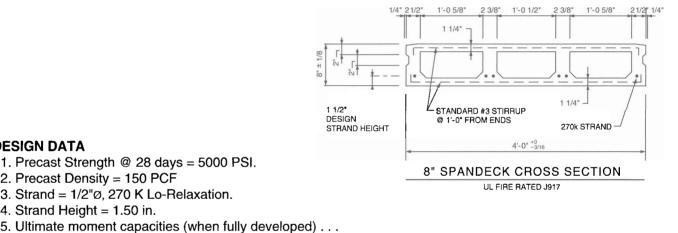
From ACI 318-02 18.3.3 => fx = 7.5 f'c = 7.5 4000 = 474 psi E class U 18.4.1 => assume for MAX service loads \Rightarrow $f_c = 0.6 f'_c = 0.6 (4000) = 2400 psi$ W = 75 psf + 10 psf + 40 psf = 125 psf (superimposed) slab thickness = 6" L = 24'assume e=2" $M = \frac{\omega L^2}{8} = \frac{(125)(24)^2}{8} = 9 f_{\pm} k_{/ct}$ $S = \frac{bd^2}{6} = \frac{(12)(b)^2}{5} = 72 \text{ in}^3$ A= bxd= 12"x6" = 72 m² stress @ top $f_{top} = -\frac{M}{5} - \frac{Pe}{A} + \frac{Pee}{5} = -\frac{.9 \text{ ft} k}{.72 \text{ in}^3} - \frac{Pe}{.72 \text{ in}^2} + \frac{Pe(.2^{\prime\prime})}{.72 \text{ in}^3} = -2.4 \text{ ksi}$ $-1.5 + \frac{P_e}{177} = -2.4 \Rightarrow P_e = -64.8 \text{K}$ $f_{bot} = \frac{M}{S} - \frac{Re}{A} - \frac{Re}{S} = \frac{9 Rk}{72 \ln^3} - \frac{Re}{72 \ln^3} - \frac{Re(z)}{72 \ln^3} = 0.474 \text{ ks}$ = 1.5 - $\frac{Pe}{24}$ = .474 => Pe = 24.6K 2.65K => use 24.6K/At check top again $f_{top} = -\frac{M}{3} - \frac{Re}{A} + \frac{Re}{3}$ Spacing $\text{Spacing} = \frac{24.8'}{24.10} \times 12 = \text{every}$ $Ap_{s} = 0.153 \text{ m}^{2}$ = -1,5 + 24.6 Fpy = 270 Ksi 21Z" = - 1,16 L - 2.4 0K forrand = 60% × fpy × Aps = 24,8 × /ot

Post-Tentioned Concrete (N-S)

$$f_{x} = 4774 \text{ psf}$$
 (class u)
 $f_{c} = 2460 \text{ psf}$ (max service loads) $\int ACT = 318 - 62$
 $\omega = 125 \text{ psf}$ (superimposed)
 $L = 28'8'' + 28'8'' + 5' = (62'4'')$
Try slab thickness = 12"
assume $e = 3''$

 $M = \frac{\omega L^2}{8} = \frac{(125)(62.33)^2}{R} = 60.71 \text{ GrK/GC}$ $S = \frac{bd^{2}}{b} = \frac{(12^{n})(12^{n})^{2}}{(2^{n})^{2}} = 2.88 \text{ m}^{3}$ A = 12" × 12" = 144 112 Stress @ top $f_{top} = -\frac{M}{S} - \frac{P_e}{A} + \frac{P_e e}{S} = -\frac{(60.71)(12)}{288} - \frac{P_e}{144} + \frac{P_e(3)}{288} = -2.4 \implies P_e = 37.32 \text{ K}$ Stess @ bottom $f_{\text{bot}} = \frac{M}{5} - \frac{P_e}{A} - \frac{P_e}{5} = \frac{(\omega, 171)\ell(2)}{288} - \frac{P_e}{144} - \frac{P_e(3)}{288} = .4774 \implies P_e = 118.4K$ A=14" (assume e=5) Not Good ! Try 14" slab $S = \frac{b_0 l^2}{l_a} = \frac{l_2 (14)^2}{l_a} = 392 \text{ m}^3$ A= bxd= 12x14= 168 m2 top

$$f_{top} = -\frac{(L0.71)(R)}{392} - \frac{Re}{168} + \frac{Re(5)}{392} = -2.4 \implies Re = -79.6K$$


Precast Hollow Core System (Nitterhouse)
Try 8" x4" Span Deck U.L. J917
(No topping)

$$WT = 57.5 \text{ psf}$$

Dead Loads
 $M/E/P = 10 \text{ psf}$
Partitions = $\frac{20 \text{ psf}}{30 \text{ psf}}$
Longest Span for this suscess of the Willing the second

Prestressed Concrete 8" x 4' SpanDeck – U.L. – J917

(NO TOPPING)

$\begin{array}{c} \mbox{PHYSICAL PROPERTIES} \\ \mbox{Precast} \\ \mbox{A} &= 180 \mbox{ in.}^2 & \mbox{S}_b &= 397 \mbox{ in.}^3 \\ \mbox{I} &= 1543 \mbox{ in.}^4 & \mbox{S}_t &= 375 \mbox{ in.}^3 \end{array}$											
A	=	180 in. ²	Sb	=	397 in. ³						
L	=	1543 in.4	St	=	375 in. ³						
Y Y	o =	3.89 in.	Wt.	=	230 PLF						
Yt	=	4.11 in.	Wt.	=	57.5 PSF						
е	=	2.39 in.									

2. Precast Density = 150 PCF

DESIGN DATA

- 3. Strand = 1/2"Ø, 270 K Lo-Relaxation.
- 4. Strand Height = 1.50 in.
- 5. Ultimate moment capacities (when fully developed) . . .
 - 4 1/2"ø, 270K = 74.3'K
 - 6 1/2"Ø. 270K = 105.6'K
- 6. Maximum bottom tensile stress is $6\sqrt{f'c} = 424$ PSI.
- 7. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 8. Flexural strength capacity is based on stress/strain strand relationships.
- 9. All values in this table are based on ultimate strength and are not governed by service stress.
- 10. Shear values are the maximum allowable before shear reinforcement is required.
- 11. Deflection limits were not considered when determining allowable loads in this table.

8" SPANDECK W/O TOPPING								ALLOWABLE SUPERIMPOSED LOAD (PSF)																		
STRAND PATTERN				SPAN (FEET)																						
STRAND PATTERN		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32		
Flexure	4	-	1/2"ø	610	550	499	457	399	341	294	255	222	195	171	151	133	117	103	92	82	72	66	56	49	43	\bigvee
Shear	4	-	1/2"ø	441	393	354	321	294	270	249	231	215	201	188	177	160	145	132	120	110	101	95	90	82	75	\wedge
Flexure	6	-	1/2"ø	885	800	726	667	586	509	437	382	334	296	263	234	208	187	168	151	136	122	111	100	90	81	73
Shear	6	_	1/2"ø	459	411	370	337	308	283	262	243	226	211	197	185	174	164	155	147	139	131	120	111	102	94	87

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

			and the second second										
0 psi 3ars	l m o		IC	s.f.	2.24 2.36 2.63 2.63 2.74 2.73 3.04	2.38 2.57 2.86 3.04 3.21 3.42	2.39 2.75 3.12 3.53 3.33 3.51	2.64 2.99 3.11 3.73 3.73 3.96	2.58 2.97 3.29 3.57 3.81 4.09	2.62 2.84 3.12 3.73 4.02 4.28			
$f_c' = 4,000$ Grade 60 Be		Steel (psf) Location of Panel	Ш	.833 c.f./s.f.	2.22 2.35 2.61 2.61 2.61 2.61 2.61 3.03	2.36 2.55 3.01 3.32 3.33 3.33	2.37 2.58 2.72 3.30 3.30 3.46	2.61 2.72 3.08 3.40 3.91	2.58 2.79 2.95 3.25 3.78 3.78 4.04	2.63 2.82 3.10 3.38 3.99 4.23			
		Local	1	0.8	221 258 258 258 258 303 303	2.35 2.53 2.75 2.75 3.22 3.36 3.36	2.36 2.59 2.68 3.06 3.41	2.59 2.71 3.06 3.36 3.87 3.87 3.87	2.58 2.75 2.75 3.22 3.74 3.92 3.74 3.99	2.63 2.79 3.34 3.36 4.19			
		Strip	Bottom		72+###55 72-72-4-#	8888888 ++++++++++++++++++++++55555 52555555555	88888888888888888888888888888888888888	994 4 4 4 4 4 4 4 4 4 4 4 4 4	9-#45 9-#45 9-#45 9-#55	9-#5 9-#5 9-#5 9-#5 10-#5			
PANEI	ig Bars	Middle Strip	Top		7+# 5 7+# 5 7+# 5 7+# 5 7+# 5 7+# 5	8888888 88888 88888 88888 8888 8888 8888	8888888 88888888 888888888888888888888	00000000000000000000000000000000000000	9-#55 9-#55 9-#55 10-#55 10-#55	9-#5 9-#5 9-#5 10-#5 11-#5			
INTERIOR	Reinforcing Bars	Strip	Bottom	OF SLA	7-# 5 7-# 5 7-# 5 7-# 5 8-# 5 8-# 5 8-# 5	90000000000000000000000000000000000000	8-#5 8-#5 0-#45 0-#55 0-#55 0-#55	9-#5 9-#5 9-#5 10-#5 12-#5	9-#5 9-#5 9-#5 10-#5 12-#5 13-#5	9-#5 9-#5 10-#5 9-#6 10-#6 10-#6	1		
		Column Strip	Top	THICKNESS	9-# 5 9-# 5 9-# 6 10-# 6 11-# 5 10-# 7	10-#5 13-#5 16-#5 10-#7 12-#7 12-#7	12-#5 11-#6 112-#6 110-#7 10-#8	14-#5 16-#5 115-#6 13-#7 11-#8 112-#8	11-#6 15-#6 15-#6 13-#7 11-#8 12-#8 13-#8	13-#6 15-#6 13-#7 19-#6 12-#8 112-#8 114-#8			
SQUARE	(1)	Min.	(in.)		201412022	2222312420	10 25 28 28 28 28 28	10 24 31 31	312233 34 37 27 38 37 27 38 37 37 37 37 37 37 37 37 37 37 37 37 37	25 25 30 30 41	1		
SQ	(3)	1 Poor	(psí	= TOTAL	50 150 350 350 350	50 150 350 350 350 350 350 350 350 350 350 3	50 350 350 350 350 350 350 350 350 350 3	50 100 300 350 350 350 350 350 350 350 350 3	50 250 350 350 350 350 350 350 350 350 350 3	50 250 350 350 350	1		
	(2)	Span	(ff)	10 in. =	8888888	3333333	8888888	88888888	24 24 24 24 24 24 24	25 25 25 25 25 25 25 25 25 25 25 25 25 2			
	1	. lau	0	c.f./s.f.	2.24 2.30 2.64 2.64 2.81 2.95 3.30	2.33 2.49 2.82 3.50 3.50 3.50	2.36 2.47 2.76 3.04 3.18 3.48 3.74	2.54 2.69 2.69 3.07 3.78 3.78 4.15	2.49 2.75 2.75 3.37 3.37 4.14 4.45	2.61 2.88 3.24 3.55 3.96 4.35 4.35			
PANEL	End Panel	Steel (psf) Location of Panel	EC	0.833 c.	2.24 2.33 2.46 2.62 2.80 2.98 3.12	2.35 2.52 2.66 3.22 3.22 3.41	2.36 2.53 3.40 3.62 3.62	2.59 2.70 3.10 3.73 3.73 49	256 279 3366 4.01 4.01	2.61 2.85 3.21 3.49 4.18 4.18			
	E	S	ш		2.23 2.32 2.46 2.61 2.61 2.61 3.09 3.09	2.34 2.51 2.78 2.78 3.37 3.37	2.34 2.53 2.75 3.35 3.35 3.35 3.35	2.56 2.69 3.08 3.69 3.69 3.69	2.55 2.78 2.78 3.34 3.362 3.362 4.19	2.60 2.84 3.19 3.79 4.15 4.50			
EDGE P		- 0			7+#55 7-##55 7-##55 7-##55 7-##55 7-##55 7-7-#	88888 +++ 88888 -+++ 8888 -+++ 8888 -+++ 8888 	98888 ++++ 08888 -+++ 08888 -+++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -+++ 0888 -++++ 0888 -++++ 0888 -++++ 0888 -++++ 0888 -++++ 0888 -+++++ 0888 -+++++ 0888 -+++++ 0888 -++++++ 0888 -++++++++++	$\begin{array}{c} 9^{+\#}5\\ 9^{-\#}5\\ 9^{-\#}5\\ 9^{-\#}5\\ 9^{-\#}5\\ 9^{-\#}5\\ 10^{-\#}5\end{array}$	9-#5 9-#5 9-#5 9-#5 10-#5	9-#5 9-#5 9-#5 9-#5 10-#5 11-#5 12-#5			
		Each Middle	Bottom		24+22 24+24+22 24+22 24+22 24+22 24+24+22 24+24+22 24+24+24+22 24+24+24+22 24+24+24+24+24+24+24+24+24+24+24+24+24+2	00000000000000000000000000000000000000	8-#55 8-#55 9-#55 10-#55 10-#55	9-#5 9-#5 9-#5 10-#5 8-#6 8-#6	9-#5 9-#5 9-#5 10-#5 8-#6 9-#6 9-#6	9-#5 9-#5 9-#5 110-#5 112-#5 112-#5 110-#6			
SQUARE	forcing Bars	Too	Int.		10-#5 112-#5 113-#5 111-#6 9-#7 10-#7 20-#5	11-#5 10-#6 11-#6 11-#7 115-#6 10-#8	13-# 5 11-# 5 10-# 7 11-# 7 112-# 7 110-# 8 111-# 8	11-# 6 17-# 5 20-# 5 112-# 7 11-# 8 113-# 8 13-# 8	16-# 5 11-# 7 12-# 7 11-# 8 11-# 8 13-# 8 13-# 8 14-# 8	13-# 6 12-# 7 14-# 7 12-# 8 13-# 8 15-# 8 15-# 8			
	Reinfo	Each Column Strip	Bottom		7-#5 7-#5 9-#5 7-#6 7-#6 7-#6 12-#5	8-#5 8-#5 9-#5 10-#5 7-#7 7-#7	8-#5 9-#55 8-#6 8-#6 112-#5 113-#5 8-#7	9-#5 9-#5 110-#5 113-#5 8-#7 9-#7 9-#7	10-#5 8-#6 8-#7 8-#7 8-#8 8-#8	11-# 5 9-# 6 9-# 7 9-# 7 10-# 5 9-# 8 9-# 8			
		De tra	+	+	diagona de		9 + 5 3 - 4 5 - 4 5 - 4 5 - 4 5 - 4 - 4 - 4 - 5 - 4 - 4	10-450 1 10-450 1 10-4550 1 10-45500 10-45500 11-45500 11-45000	10-#52 10-#522 10-#533 10-#533 11-#533 12-#533 12-#533	11-#5 3 11-#5 4 11-#5 3 11-#5 3 12-#5 5 13-#5 5 14-#5 3	11-#554 11-#555 13-#554 14-#553 15-#553 16-#553	12-#554 12-#555 12-#555 14-#554 15-#53 12-#62 13-#62	
	ments	-M 1st. int.	(ft-kip)		145 175 201 227 251 251 300	167 202 232 261 316 342 342	192 266 330 360 388 388	218 261 300 373 373 405 437	247 293 338 378 417 454 490	278 377 377 465 507 535			
	SHEARHEADS) (1) Total Panel Moments	+M Int.	(ft-kip) (ft-kip)	8	107 130 149 168 187 206 223	124 150 1172 216 235 235 254	142 171 171 222 245 267 288 288	162 194 223 251 251 301. 325	184 218 251 281 337 337 364	206 244 280 315 346 376 397			
DS)		-M Ext.	(ft-kip)	F SLAB	54 65 75 84 93 103 112	62 75 86 97 108 118 127	71 86 99 111 123 134 144	81 97 1111 126 138 150 162	92 125 140 155 169 182	103 140 158 173 188 199	-		
SYSTEM		quare mn	Y	VESS OF	0.840 0.837 0.804 0.784 0.726 0.725 0.725	0.845 0.816 0.769 0.719 0.719 0.662 0.666	0.821 0.780 0.753 0.705 0.676 0.675 0.675	0.813 0.791 0.738 0.696 0.709 0.669 0.669	0.817 0.773 0.704 0.691 0.655 0.637 0.637 0.612	0.796 0.755 0.697 0.683 0.619 0.619 0.623 0.623			
ATE S SHEA	(1	Min. Square Column	(in.)	THICKNESS	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	275222	13 22 25 25 27 25 27 25 27 27 27 27 27 27 27 27 27 27 27 27 27	15 21 24 27 33 33	- 16 20 27 33 33 33 33	22 26 33 33 33 41			
PLA	Factored Sunerim-	posed	(psf)	= TOTAL	50 150 250 350 350	50 250 350 350	50 250 350 350	50 250 350 350	, 100 250 350 350	50 250 350 350 350			
FLAT (WITH	-	Cols. $\ell_1 = \ell_2$	(ft)	10 in. =	22222222	2222222	22222222	3333333333	24 24 24 24 24 24 24 24 24 24 24 24 24 2	25 25 25 25 25 25 25 25 25 25 25			
	-		-								-		